Các dạng tích phân hàm ẩn điển hình

Nhóm thuvientoan.net xin gửi đến các bạn đọc tài liệu Các dạng tích phân hàm ẩn vận dụng cao điển hình.

Khái quát nội dung chuyên đề tích phân hàm ẩn vận dụng cao

DẠNG 1: ÁP DỤNG CÁC QUY TẮC VÀ ĐẠO HÀM CỦA HÀM SỐ HỢP

1. Nếu u=u(x) và v=v(x) thì (uv)′=u′v+uv′. Nếu [f(x).g(x)]′=h(x) thì f(x).g(x)=∫h(x)dx.
2. Nếu u=u(x) và v=v(x) thì (uv)′=u′v–uv′v2 với v≠0. Nếu (f(x)g(x))′=h(x) thì f(x)g(x)=∫h(x)dx.
3. Nếu u=u(x) thì (u)′=u′2u với u>0. Nếu [f(x)]′=h(x) thì f(x)=∫h(x)dx.
4. Nếu u=u(x) thì (eu)′=u′.eu. Nếu (ef(x))′=g(x) thì ef(x)=∫g(x)dx.
5. Nếu u=u(x) nhận giá trị dương trên K thì [ln⁡u]′=u′u trên K. Nếu [ln⁡(f(x))]′=g(x) thì ln⁡(f(x))=∫g(x)dx.

DẠNG 2: PHƯƠNG PHÁP ĐỔI BIẾN

TÍCH PHÂN HÀM ẨN ĐỔI BIẾN DẠNG 1: Cho ∫abu′(x).f[u(x)]dx, tính ∫abf(x)dx. Hoặc cho ∫abf(x)dx, tính ∫abu′(x).f[u(x)]dx.
TÍCH PHÂN HÀM ẨN ĐỔI BIẾN DẠNG 2: Tính ∫abf(x)dx, biết hàm số f(x) thỏa mãn A.f(x)+B.u′.f(u)+C.f(a+b–x)=g(x).
TÍCH PHÂN HÀM ẨN ĐỔI BIẾN DẠNG 3: Lần lượt đặt t=u(x) và t=v(x) để giải hệ phương trình hai ẩn, suy ra hàm số f(x).
TÍCH PHÂN HÀM ẨN ĐỔI BIẾN DẠNG 4: Cho f(x).f(a+b–x)=k2, khi đó I=∫abdxk+f(x)=b–a2k.
TÍCH PHÂN HÀM ẨN ĐỔI BIẾN DẠNG 5: Cho hàm số y=f(x) thỏa mãn g[f(x)]=x và g(t) là hàm đơn điệu. Hãy tính tích phân I=∫abf(x)dx.

DẠNG 3: PHƯƠNG PHÁP TỪNG PHẦN

Tích phân từng phần với hàm ẩn thường áp dụng cho những bài toán mà giả thiết hoặc kết luận có một trong các tích phân sau: ∫abu(x).f′(x)dx hoặc ∫abu′(x).f(x)dx.

DẠNG 4: PHƯƠNG TRÌNH VI PHÂN TUYẾN TÍNH CẤP 1

Bài toán tích phân liên quan đến biểu thức 

....

Nhóm thuvientoan.net hy vọng với tài liệu Các dạng tích phân hàm ẩn điển hình sẽ giúp ích được cho các bạn đọc và được đồng hành cùng các bạn, cảm ơn!

tích phân hàm ẩn vận dụng cao

Tham khảo bài viết

THEO THUVIENTOAN.NET

Tải file Tại đây
Liên hệ
2025 Copyright © THUVIENTOAN.NET Web Design by Nina.vn
Online: 641   |   Total: 13600420
Hotline tư vấn miễn phí:

Các dạng tích phân hàm ẩn điển hình

TẢI TÀI LIỆU VÀ ĐỀ THI MIỄN PHÍ