Ứng dụng của Bất biến và nửa bất biến

Thuvientoan.net xin gửi đến bạn đọc tài liệu Ứng dụng của Bất biến và nửa bất biến.

Bất biến là một trong những khái niệm trung tâm của toán học. Nó có mặt trong hầu hết các lĩnh vực của Toán học: Đại số, Hình học, Tô-pô, Lý thuyết số, Xác suất, Phương trình vi phân ... Chẳng hạn, các bất biến được sử dụng trong việc nghiên cứu các đồ thị phẳng (định lý Kuratowsky), giải tích hàm (chứng minh định lý về điểm bất động Brawer hay chứng minh hình cầu không đồng phôi với xuyến. Khó có định lý về phân loại (nhóm, đại số, đồ thị ...) nào lại thiếu sự có mặt của các bất biến. Có hẳn một lý thuyết bất biến nghiên cứu các dạng bất biến đại số của các biến đổi tuyến tính.
Nhưng bất biến không phải là một khái niệm gì cao siêu mà các học sinh phổ thông bình thường không gặp và không hiểu được. Đôi khi bất biến chỉ là tính chẵn lẻ, là sự chia hết cho 3, là tính đối xứng của một trạng thái, là sự bảo toàn góc ... tức là những điều rất dễ hiểu và nhận thấy. Việc đưa ý niệm về bất biến cho các em học sinh, đặc biệt là học sinh chuyên toán có ý nghĩa nhất định trong việc phát triển tư duy toán học, nhìn thấy cái tĩnh trong cái động của học sinh.

Định nghĩa: Bất biến là những đại lượng (hay tính chất) không thay đổi trong quá trình chúng ta thực hiện các phép biến đổi.

Ví dụ minh họa: Trên bảng, người ta viết các số tự nhiên liên tiếp từ 1 đến 99 sau đó thực hiện trò chơi như sau: mỗi lần xóa hai số bất kỳ và viết một số mới bằng tổng hai số đã xóa. Việc làm này thực hiện liên tục cho đến khi còn một số trên bảng. Hỏi số cuối cùng còn lại trên bảng là bao nhiêu? Tại sao?

Tải tại đây.

THEO THUVIENTOAN.NET

Liên hệ
Tin liên quan
    2020 Copyright © THUVIENTOAN.NET Web Design by Nina.vn
    Online: 8   |   Total: 140545
    Hotline tư vấn miễn phí: 0907233487
    icon zalo

    Ứng dụng của Bất biến và nửa bất biến